Moving Average Forecasting Introducción. Como usted podría adivinar, estamos estudiando algunos de los enfoques más primitivos para la predicción. Pero espero que estas sean al menos una introducción valiosa a algunos de los problemas de computación relacionados con la implementación de pronósticos en hojas de cálculo. En este sentido, continuaremos comenzando desde el principio y comenzando a trabajar con las previsiones de Media móvil. Pronósticos de media móvil. Todo el mundo está familiarizado con los pronósticos de promedio móvil, independientemente de si creen que son. Todos los estudiantes universitarios lo hacen todo el tiempo. Piense en los resultados de su examen en un curso en el que va a tener cuatro pruebas durante el semestre. Supongamos que tienes un 85 en tu primera prueba. Qué predecirías para tu segundo puntaje de prueba? Qué crees que tu maestro predijo para tu siguiente puntaje de prueba? Qué crees que tus amigos podrían predecir para tu siguiente puntaje de prueba? Qué crees que tus padres podrían predecir para tu próximo puntaje de prueba? Todo el blabbing que usted puede hacer a sus amigos y padres, él y su profesor son muy probables esperar que usted consiga algo en el área de los 85 que usted acaba de conseguir. Bueno, ahora vamos a suponer que a pesar de su autopromoción a sus amigos, se sobrevaloran a sí mismos y la figura que puede estudiar menos para la segunda prueba y por lo que se obtiene un 73. Ahora lo que todos los interesados y despreocupado va a Anticipar que usted conseguirá en su tercer examen Hay dos acercamientos muy probables para que desarrollen una estimación sin importar si lo compartirán con usted. Pueden decir a sí mismos: "Este tipo siempre está soplando el humo de su inteligencia. Hes va a conseguir otro 73 si hes suerte. Tal vez los padres tratarán de ser más solidarios y decir: "Bueno, hasta ahora has conseguido un 85 y un 73, por lo que tal vez debería figura en obtener sobre un (85 73) / 2 79. No sé, tal vez si usted hizo menos Fiesta y werent meneando la comadreja en todo el lugar y si comenzó a hacer mucho más estudiando que podría obtener una puntuación más alta. quot Ambos de estos estimados son en realidad las previsiones de promedio móvil. El primero es usar sólo su puntaje más reciente para pronosticar su rendimiento futuro. Esto se denomina pronóstico de media móvil utilizando un período de datos. El segundo es también un pronóstico de media móvil, pero utilizando dos períodos de datos. Vamos a asumir que todas estas personas estallando en su gran mente tienen tipo de molesto y usted decide hacer bien en la tercera prueba por sus propias razones y poner una puntuación más alta en frente de sus quotalliesquot. Usted toma la prueba y su puntuación es en realidad un 89 Todos, incluido usted mismo, está impresionado. Así que ahora tiene la prueba final del semestre que viene y como de costumbre se siente la necesidad de incitar a todos a hacer sus predicciones acerca de cómo youll hacer en la última prueba. Bueno, espero que veas el patrón. Ahora, espero que puedas ver el patrón. Cuál crees que es el silbido más preciso mientras trabajamos? Ahora volvemos a nuestra nueva compañía de limpieza iniciada por su hermana separada llamada Whistle While We Work. Tiene algunos datos de ventas anteriores representados en la siguiente sección de una hoja de cálculo. Primero presentamos los datos para un pronóstico de media móvil de tres periodos. La entrada para la celda C6 debe ser Ahora puede copiar esta fórmula de celda abajo a las otras celdas C7 a C11. Observe cómo el promedio se mueve sobre los datos históricos más recientes, pero utiliza exactamente los tres períodos más recientes disponibles para cada predicción. También debe notar que realmente no necesitamos hacer las predicciones para los períodos pasados con el fin de desarrollar nuestra predicción más reciente. Esto es definitivamente diferente del modelo de suavizado exponencial. He incluido las predicciones anteriores porque las usaremos en la siguiente página web para medir la validez de la predicción. Ahora quiero presentar los resultados análogos para un pronóstico de media móvil de dos periodos. La entrada para la celda C5 debe ser Ahora puede copiar esta fórmula de celda abajo a las otras celdas C6 a C11. Observe cómo ahora sólo se usan las dos más recientes piezas de datos históricos para cada predicción. Nuevamente he incluido las predicciones anteriores para fines ilustrativos y para uso posterior en la validación de pronósticos. Algunas otras cosas que son importantes de notar. Para una predicción de promedio móvil del período m sólo se usan los m valores de datos más recientes para hacer la predicción. Nada más es necesario. Para una predicción media móvil del período m, al hacer predicciones quotpast, observe que la primera predicción ocurre en el período m 1. Ambas cuestiones serán muy significativas cuando desarrollemos nuestro código. Desarrollo de la función de media móvil. Ahora necesitamos desarrollar el código para el pronóstico del promedio móvil que se puede usar con más flexibilidad. El código sigue. Observe que las entradas son para el número de períodos que desea utilizar en el pronóstico y la matriz de valores históricos. Puede guardarlo en cualquier libro que desee. Función MovingAverage (Histórica, NumberOfPeriods) Como única Declaración e inicialización de variables Dim Item como variante Dim Contador como Entero Dim Acumulación como único Dim HistoricalSize As Entero Inicialización de variables Counter 1 Acumulación 0 Determinación del tamaño del historial HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulación del número apropiado de los valores observados anteriormente más recientes Acumulación Acumulación Histórica (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulación / NumberOfPeriods El código se explicará en la clase. Desea colocar la función en la hoja de cálculo para que aparezca el resultado de la computación donde debería tener gusto de lo siguiente. Promedio móvil Este ejemplo le enseña cómo calcular el promedio móvil de una serie temporal en Excel. Una gran ventaja se utiliza para suavizar las irregularidades (picos y valles) para reconocer fácilmente las tendencias. 1. En primer lugar, echemos un vistazo a nuestra serie de tiempo. 2. En la ficha Datos, haga clic en Análisis de datos. Nota: no puede encontrar el botón Análisis de datos Haga clic aquí para cargar el complemento Herramientas de análisis. 3. Seleccione Media móvil y haga clic en Aceptar. 4. Haga clic en el cuadro Rango de entrada y seleccione el rango B2: M2. 5. Haga clic en el cuadro Interval y escriba 6. 6. Haga clic en el cuadro Rango de salida y seleccione la celda B3. 8. Trazar un gráfico de estos valores. Explicación: dado que establecemos el intervalo en 6, el promedio móvil es el promedio de los 5 puntos de datos anteriores y el punto de datos actual. Como resultado, los picos y valles se suavizan. El gráfico muestra una tendencia creciente. Excel no puede calcular el promedio móvil para los primeros 5 puntos de datos porque no hay suficientes puntos de datos anteriores. 9. Repita los pasos 2 a 8 para el intervalo 2 y el intervalo 4. Conclusión: Cuanto mayor sea el intervalo, más se suavizarán los picos y los valles. Cuanto más pequeño es el intervalo, más cerca están las medias móviles de los puntos de datos reales. Te gusta este sitio web gratis? Por favor, comparta esta página en GoogleA series de tiempo es una secuencia de observaciones de una variable aleatoria periódica. Ejemplos de ello son la demanda mensual de un producto, la matrícula anual de primer año en un departamento de la universidad y los flujos diarios en un río. Las series temporales son importantes para la investigación operativa porque son a menudo los impulsores de los modelos de decisión. Un modelo de inventario requiere estimaciones de las demandas futuras, un modelo de programación y dotación de personal para un departamento universitario requiere estimaciones del flujo futuro de estudiantes y un modelo para proporcionar advertencias a la población en una cuenca requiere estimaciones de flujos fluviales para el futuro inmediato. El análisis de series temporales proporciona herramientas para seleccionar un modelo que describe las series temporales y utilizar el modelo para predecir eventos futuros. Modelar la serie temporal es un problema estadístico porque los datos observados se utilizan en procedimientos computacionales para estimar los coeficientes de un supuesto modelo. Los modelos suponen que las observaciones varían aleatoriamente sobre un valor medio subyacente que es una función del tiempo. En estas páginas, se restringe la atención al uso de datos de series de tiempo históricas para estimar un modelo dependiente del tiempo. Los métodos son apropiados para el pronóstico automático a corto plazo de la información de uso frecuente donde las causas subyacentes de la variación del tiempo no están cambiando marcadamente en el tiempo. En la práctica, los pronósticos derivados de estos métodos son posteriormente modificados por analistas humanos que incorporan información no disponible a partir de los datos históricos. Nuestro objetivo principal en esta sección es presentar las ecuaciones para los cuatro métodos de pronóstico utilizados en el complemento de predicción: promedio móvil, suavizado exponencial, regresión y suavizado exponencial doble. Estos son llamados métodos de suavizado. Los métodos no considerados incluyen la predicción cualitativa, regresión múltiple, y métodos autorregresivos (ARIMA). Los interesados en una cobertura más amplia deben visitar el sitio de principios de pronóstico o leer uno de los varios libros excelentes sobre el tema. Utilizamos el libro Previsión. Por Makridakis, Wheelwright y McGee, John Wiley amp Sons, 1983. Para utilizar el libro de Ejemplos de Excel, debe tener instalado el complemento de Pronóstico. Elija el comando Relink para establecer los vínculos al complemento. Esta página describe los modelos utilizados para la predicción simple y la notación utilizada para el análisis. Este método de pronóstico más simple es el pronóstico del promedio móvil. El método simplemente promedios de las últimas m observaciones. Es útil para series de tiempo con una media que cambia lentamente. Este método considera todo el pasado en su pronóstico, pero pesa la experiencia reciente más fuertemente que menos reciente. Los cálculos son simples porque sólo la estimación del período anterior y los datos actuales determinan la nueva estimación. El método es útil para series de tiempo con una media que cambia lentamente. El método del promedio móvil no responde bien a una serie cronológica que aumenta o disminuye con el tiempo. Aquí incluimos un término de tendencia lineal en el modelo. El método de regresión se aproxima al modelo construyendo una ecuación lineal que proporcione el ajuste de mínimos cuadrados a las últimas m observaciones. A.1 Métodos de cálculo de pronósticos Hay disponibles doce métodos de cálculo de pronósticos. La mayoría de estos métodos proporcionan un control limitado del usuario. Por ejemplo, se puede especificar el peso de los datos históricos recientes o el intervalo de fechas de los datos históricos utilizados en los cálculos. Los siguientes ejemplos muestran el procedimiento de cálculo para cada uno de los métodos de pronóstico disponibles, dados un conjunto idéntico de datos históricos. Los siguientes ejemplos utilizan los mismos datos de ventas de 2004 y 2005 para producir un pronóstico de ventas de 2006. Además del cálculo de pronóstico, cada ejemplo incluye una predicción simulada de 2005 para un período de retención de tres meses (opción de procesamiento 19 3), que se utiliza para el porcentaje de precisión y cálculos de desviación absoluta media (ventas reales comparadas con predicciones simuladas). A.2 Criterios de evaluación del rendimiento de la previsión Dependiendo de su selección de las opciones de procesamiento y de las tendencias y patrones existentes en los datos de ventas, algunos métodos de pronóstico obtendrán mejores resultados que otros para un conjunto de datos históricos dado. Un método de pronóstico apropiado para un producto puede no ser apropiado para otro producto. También es improbable que un método de predicción que proporcione buenos resultados en una etapa del ciclo de vida de un producto siga siendo apropiado durante todo el ciclo de vida. Puede elegir entre dos métodos para evaluar el rendimiento actual de los métodos de pronóstico. Estas son la desviación absoluta media (MAD) y el porcentaje de precisión (POA). Ambos métodos de evaluación de rendimiento requieren datos históricos de ventas para un período de tiempo especificado por el usuario. Este período de tiempo se denomina período de retención o período de mejor ajuste (PBF). Los datos de este período se utilizan como base para recomendar cuál de los métodos de pronóstico se utilizará para realizar la siguiente proyección de pronóstico. Esta recomendación es específica para cada producto y puede cambiar de una generación de pronóstico a otra. Los dos métodos de evaluación del desempeño de los pronósticos se demuestran en las páginas que siguen los ejemplos de los doce métodos de pronóstico. A.3 Método 1 - Porcentaje especificado durante el año pasado Este método multiplica los datos de ventas del año anterior por un factor especificado por el usuario, por ejemplo, 1,10 para un aumento de 10 o 0,97 para una disminución de 3. Historial de ventas requerido: Un año para calcular el pronóstico más el número especificado por el usuario de períodos de tiempo para evaluar el desempeño del pronóstico (opción de procesamiento 19). A.4.1 Cálculo de pronósticos Rango del historial de ventas que se utilizará en el cálculo del factor de crecimiento (opción de procesamiento 2a) 3 en este ejemplo. Sumar los últimos tres meses de 2005: 114 119 137 370 Sumar los mismos tres meses del año anterior: 123 139 133 395 El factor calculado 370/395 0,9367 Calcular las previsiones: Ventas de enero de 2005 128 0,9367 119,8036 o aproximadamente el 120 de febrero de 2005 Ventas 117 0,9367 109,5939 o alrededor de las ventas del 110 de marzo de 2005 115 0,9367 107,7205 o alrededor de 108 A.4.2 Cálculo de previsiones simuladas Sumar los tres meses de 2005 antes del período de retención (julio, agosto y septiembre): 129 140 131 400 Sumar los mismos tres meses Para el año anterior: 141 128 118 387 El factor calculado 400/387 1.033591731 Calcula el pronóstico simulado: Octubre, 2004 ventas 123 1.033591731 127.13178 Ventas de noviembre de 2004 139 1.033591731 143.66925 Ventas de diciembre de 2004 133 1.033591731 137.4677 A.4.3 Porcentaje de Precisión Cálculo POA (127.13178 143.66925 137.4677) / (114 119 137) 100 408.26873 / 370 100 110.3429 A.4.4 Cálculo de Desviación Absoluta Media MAD (127.13178 - 114 143.66925 - 119 137.4677 - 137) / 3 (13.13178 24.66925 0.4677) / 3 12.75624 A.5 Método 3 - El año pasado a este año Este método copia los datos de ventas del año anterior al año siguiente. Historial de ventas requerido: Un año para calcular el pronóstico más el número de periodos de tiempo especificados para evaluar el desempeño del pronóstico (opción de procesamiento 19). A.6.1 Cálculo del pronóstico Número de periodos que se incluirán en el promedio (opción de procesamiento 4a) 3 en este ejemplo Para cada mes del pronóstico, promedio de los datos de los tres meses anteriores. Previsiones de enero: 114 119 137 370, 370/3 123.333 o 123 Previsiones de febrero: 119 137 123 379, 379/3 126.333 o 126 Previsiones de marzo: 137 123 126 379, 386/3 128.667 o 129 A.6.2 Cálculo de pronóstico simulado Octubre 2005 Ventas (129 140 131) / 3 133,3333 Ventas de noviembre de 2005 (140 131 114) / 3 128,3333 Ventas de diciembre de 2005 (131 114 119) / 3 121,3333 A.6.3 Porcentaje de cálculo de la exactitud POA (133.3333 128.3333 121.3333) / (114 119 137) 100 103.513 A.6.4 Cálculo de la desviación absoluta media MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) / 3 14.7777 A.7 Método 5 - Aproximación lineal La aproximación lineal calcula una tendencia basada en dos puntos de datos del historial de ventas. Estos dos puntos definen una línea de tendencia recta que se proyecta hacia el futuro. Utilice este método con precaución, ya que los pronósticos a largo plazo son aprovechados por pequeños cambios en sólo dos puntos de datos. Historial de ventas requerido: El número de períodos a incluir en la regresión (opción de procesamiento 5a), más 1 más el número de períodos de tiempo para evaluar el rendimiento de la previsión (opción de procesamiento 19). A.8.1 Cálculo de pronóstico Número de períodos a incluir en la regresión (opción de procesamiento 6a) 3 en este ejemplo Para cada mes del pronóstico, agregue el aumento o disminución durante los períodos especificados antes del período de retención del período anterior. Promedio de los tres meses anteriores (114 119 137) / 3 123.3333 Resumen de los tres meses anteriores con peso considerado (114 1) (119 2) (137 3) 763 Diferencia entre los valores 763 - 123.3333 (1 2 3) 23 Relación (12 22 32) - 2 3 14 - 12 2 Valor1 Diferencia / Relación 23/2 11,5 Valor2 Relación medio-valor1 123,3333 - 11,5 2 100,333 Pronóstico (1 n) valor1 valor2 4 11,5 100,333 146,333 o 146 Pronóstico 5 11,5 100,3333 157,8333 o 158 Previsiones 6 11,5 100,3333 169,3333 o 169 A.8.2 Cálculo de pronósticos simulados Ventas de octubre de 2004: Promedio de los tres meses anteriores (129 140 131) / 3 133,3333 Resumen de los tres meses anteriores con ponderación considerada (129 1) (140 2) (131 3) 802 Diferencia entre los valores 802 - 133.3333 (1 2 3) 2 Relación (12 22 32) - 2 3 14 - 12 2 Valor1 Diferencia / Relación 2/2 1 Valor2 Relación medio-valor1 133.3333 - 1 2 131.3333 Pronóstico (1 N) valor1 valor2 4 1 131,3333 135,3333 Ventas de noviembre de 2004 Promedio de los tres meses anteriores (140 131 114) / 3 128,333 Resumen de los tres meses anteriores con ponderación considerada (140 1) (131 2) (114 3) 744 Diferencia entre el Valores 744 - 128.3333 (1 2 3) -25.9999 Valor1 Diferencia / Ratio -25.9999 / 2 -12.9999 Valor2 Relación medio-valor1 128.3333 - (-12.9999) 2 154.3333 Previsión 4 -12.9999 154.3333 102.3333 Diciembre 2004 Ventas Promedio de los tres meses anteriores ( 131 114 119) / 3 121.3333 Resumen de los tres meses anteriores con el peso considerado (131 1) (114 2) (119 3) 716 Diferencia entre los valores 716 - 121.3333 (1 2 3) -11.9999 Valor1 Diferencia / Ratio -11.9999 / 2 -5,9999 Valor2 Relación medio-valor1 121,3333 - (-5,9999) 2 133,333 Previsión 4 (-5,9999) 133,3333 109,3333 A.8.3 Porcentaje de precisión Cálculo POA (135,33 102,33 109,33) / (114 119 137) 100 93,78 A.8,4 Media absoluta Métodos 7 - Aproximación de Segundo Grado La Regresión Lineal determina los valores para ayb en la fórmula de pronóstico Y a bX con el objetivo de ajustar una línea recta a Los datos del historial de ventas. La Aproximación de Segundo Grado es similar. Sin embargo, este método determina los valores de a, byc en la fórmula de pronóstico Y a bX cX2 con el objetivo de ajustar una curva a los datos del historial de ventas. Este método puede ser útil cuando un producto está en la transición entre etapas de un ciclo de vida. Por ejemplo, cuando un nuevo producto pasa de la introducción a las fases de crecimiento, la tendencia de las ventas puede acelerarse. Debido al término de segundo orden, el pronóstico puede acercarse rápidamente al infinito o caer a cero (dependiendo de si el coeficiente c es positivo o negativo). Por lo tanto, este método es útil sólo en el corto plazo. Especificaciones de pronóstico: Las fórmulas encuentran a, b yc para ajustar una curva a exactamente tres puntos. Se especifica n en la opción de procesamiento 7a, el número de periodos de tiempo de datos que se acumulan en cada uno de los tres puntos. En este ejemplo n 3. Por lo tanto, los datos de ventas reales de abril a junio se combinan en el primer punto, Q1. Julio a septiembre se suman para crear Q2, y octubre a diciembre suma a Q3. La curva se ajustará a los tres valores Q1, Q2 y Q3. Historial de ventas requerido: 3 n períodos para calcular la previsión más el número de periodos de tiempo requeridos para evaluar el desempeño de pronóstico (PBF). Número de períodos a incluir (opción de procesamiento 7a) 3 en este ejemplo Utilice los meses previos (3 n) en bloques trimestrales: Q1 (abril - junio) 125 122 137 384 Q2 (julio - septiembre) 129 140 131 400 Q3 El siguiente paso consiste en calcular los tres coeficientes a, b yc que se utilizarán en la fórmula de pronóstico Y a bX cX2 (1) Q1 a bX cX2 (donde X1) abc (2) Q2 A b c c c x 2 (donde X 2) a 2b 4c (3) Q3 a bX cX2 (donde X 3) a 3b 9c Resuelve las tres ecuaciones simultáneamente para hallar b, a y c: Restar la ecuación (1) de la ecuación (2) Y resuelva para b (2) - (1) Q2 - Q1 b 3c Sustituya esta ecuación por b en la ecuación (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Finalmente, sustitúyase estas ecuaciones para ayb en El método de Aproximación de Segundo Grado calcula a, b y c de la siguiente manera: a (a), (a), (a), (c) Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) / 2 (370 - 400) (322 340 - 368) / 3 294/3 98 por período de abril a junio (-) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (322 510 - 828) / 3 1,33 o 1 por período de octubre a diciembre (X7) (322 595 - 1127) / 3 -70 A.9.2 Cálculo de pronósticos simulados Octubre, noviembre y diciembre de 2004 Ventas: T1 (enero - marzo) 360 P2 (abril - junio) 384 P3 (julio - sep) 400 a 400 - 3 (384 - 360) 328 (400 - 384) (360 - 384) / 2 -4b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 16/3 136 A.9.3 Porcentaje de cálculo de precisión POA (136 136 136) / (114 119 137) 100 110,27 A.9.4 Cálculo de Desviación Absoluta Media MAD (136 - 114 136 - 119 136 - 137) / 3 13.33 A.10 Método 8 - Método Flexible Método Flexible (Porcentaje sobre n Meses Previo) Es similar al método 1, porcentaje sobre el año pasado. Ambos métodos multiplican los datos de ventas de un período de tiempo anterior por un factor especificado por el usuario, luego proyectan ese resultado en el futuro. En el método Porcentaje sobre el año pasado, la proyección se basa en datos del mismo período del año anterior. El método flexible agrega la capacidad de especificar un período de tiempo distinto del mismo período del año pasado para utilizarlo como base para los cálculos. Factor de multiplicación. Por ejemplo, especifique 1.15 en la opción de procesamiento 8b para aumentar los datos del historial de ventas anterior en 15. Período de base. Por ejemplo, n 3 hará que el primer pronóstico se base en los datos de ventas en octubre de 2005. Historial de ventas mínimo: El usuario especificó el número de periodos al período base, más el número de períodos necesarios para evaluar el desempeño del pronóstico ( PBF). A.10.4 Cálculo de desviación absoluta media MAD (148 - 114 161 - 119 151 - 137) / 3 30 A.11 Método 9 - Promedio móvil ponderado El método de media móvil ponderada (WMA) es similar al método 4, promedio móvil (MA) . Sin embargo, con la media móvil ponderada puede asignar pesos desiguales a los datos históricos. El método calcula un promedio ponderado del historial de ventas reciente para llegar a una proyección para el corto plazo. Los datos más recientes se asignan generalmente un peso mayor que los datos antiguos, por lo que esto hace que WMA responda mejor a los cambios en el nivel de ventas. Sin embargo, el sesgo de pronóstico y los errores sistemáticos todavía ocurren cuando el historial de ventas del producto muestra tendencias fuertes o patrones estacionales. Este método funciona mejor para los pronósticos a corto plazo de productos maduros que para productos en las etapas de crecimiento o obsolescencia del ciclo de vida. N el número de períodos del historial de ventas para usar en el cálculo de pronóstico. Por ejemplo, especifique n 3 en la opción de procesamiento 9a para utilizar los tres períodos más recientes como base para la proyección en el siguiente período de tiempo. Un valor grande para n (como 12) requiere más historial de ventas. Esto resulta en un pronóstico estable, pero será lento para reconocer los cambios en el nivel de ventas. Por otro lado, un valor pequeño para n (como 3) responderá más rápidamente a los cambios en el nivel de ventas, pero el pronóstico puede fluctuar tan ampliamente que la producción no puede responder a las variaciones. El peso asignado a cada uno de los períodos de datos históricos. Los pesos asignados deben ser de 1,00. Por ejemplo, cuando n 3, asignar pesos de 0,6, 0,3 y 0,1, con los datos más recientes que reciben el mayor peso. Historial de ventas mínimo requerido: n más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) / 3 13,5 A.12 Método 10 - Suavizado lineal Este método es similar al Método 9, Promedio móvil ponderado (WMA). Sin embargo, en lugar de asignar arbitrariamente pesos a los datos históricos, se utiliza una fórmula para asignar pesos que disminuyen linealmente y sumen a 1,00. El método entonces calcula un promedio ponderado del historial de ventas reciente para llegar a una proyección para el corto plazo. Como ocurre con todas las técnicas de predicción de media móvil lineal, el sesgo de predicción y los errores sistemáticos ocurren cuando el historial de ventas del producto muestra tendencias fuertes o patrones estacionales. Este método funciona mejor para los pronósticos a corto plazo de productos maduros que para productos en las etapas de crecimiento o obsolescencia del ciclo de vida. N el número de períodos del historial de ventas para usar en el cálculo de pronóstico. Esto se especifica en la opción de procesamiento 10a. Por ejemplo, especifique n 3 en la opción de procesamiento 10b para utilizar los tres períodos más recientes como base para la proyección en el siguiente período de tiempo. El sistema asignará automáticamente los pesos a los datos históricos que disminuyen linealmente y sumen a 1,00. Por ejemplo, cuando n 3, el sistema asignará pesos de 0,5, 0,3333 y 0,1, con los datos más recientes recibiendo el mayor peso. Historial de ventas mínimo requerido: n más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (PBF). A.12.1 Cálculo del pronóstico Número de períodos a incluir en el promedio de suavizado (opción de procesamiento 10a) 3 en este ejemplo Razón para un período anterior 3 / (n2 n) / 2 3 / (32 3) / 2 3/6 0,5 Razón para dos Periodos previos 2 / (n2n) / 2 2 / (32 3) / 2 2/6 0,3333. Relación para tres períodos anteriores 1 / (n2n) / 2 1 / (32 3) / 2 1/6 0,1666. Previsiones de enero: 137 0,5 119 1/3 114 1/6 127,16 o 127 Previsiones de febrero: 127 0,5 137 1/3 119 1/6 129 Previsiones de marzo: 129 0,5 127 1/3 137 1/6 129,666 o 130 A.12.2 Simulación del cálculo de previsión Ventas de octubre de 2004 129 1/6 140 2/6 131 3/6 133,6666 Ventas de noviembre de 2004 140 1/6 131 2/6 114 3/6 124 Diciembre 2004 ventas 131 1/6 114 2/6 119 3/6 (133.6666 124 119.3333) / (114 119 137) 100 101.891 A.12.4 Cálculo de Desviación Absoluta Media MAD (133.6666 - 114 124 - 119 119.3333 - 137) / 3 14.1111 A.13 Método 11 - Suavizado Exponencial Este método es similar al Método 10, Suavizado Lineal. En el suavizado lineal el sistema asigna pesos a los datos históricos que disminuyen linealmente. En el suavizado exponencial, el sistema asigna pesos que decaen exponencialmente. La ecuación de predicción de suavizado exponencial es: Previsión a (Ventas reales anteriores) (1 - a) Previsión anterior La previsión es una media ponderada de las ventas reales del período anterior y la previsión del período anterior. A es el peso aplicado a las ventas reales del período anterior. (1 - a) es el peso aplicado a la previsión del período anterior. Valores válidos para un rango de 0 a 1, y generalmente caen entre 0,1 y 0,4. La suma de los pesos es 1,00. A (1 - a) 1 Debe asignar un valor para la constante de suavizado, a. Si no asigna valores para la constante de suavizado, el sistema calcula un valor supuesto basado en el número de períodos del historial de ventas especificado en la opción de procesamiento 11a. A la constante de suavizado utilizada en el cálculo del promedio suavizado para el nivel general o la magnitud de las ventas. Valores válidos para un rango de 0 a 1. n el rango de datos del historial de ventas para incluir en los cálculos. Generalmente, un año de datos de historial de ventas es suficiente para estimar el nivel general de ventas. Para este ejemplo, se escogió un pequeño valor para n (n 3) para reducir los cálculos manuales requeridos para verificar los resultados. El suavizado exponencial puede generar un pronóstico basado en tan poco como un punto de datos históricos. Historial de ventas mínimo requerido: n más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (PBF). A.13.1 Cálculo del pronóstico Número de períodos a incluir en el promedio de suavizado (opción de procesamiento 11a) 3 y factor alfa (opción de procesamiento 11b) en blanco en este ejemplo un factor para los datos de ventas más antiguos 2 / (11) o 1 cuando alfa es Se especificó un factor para los datos de ventas más antiguos 2 / (12), o alfa cuando se especifica alfa un factor para los 3 primeros datos de ventas 2 / (13) o alfa cuando se especifica alfa un factor para los datos de ventas más recientes 2 / (1n), o alfa cuando se especifica alfa Noviembre Sm. Promedio A (Octubre Real) (1 - a) Octubre Sm. Promedio 1 114 0 0 114 Diciembre Sm. Promedio A (Noviembre Actual) (1 - a) Noviembre Sm. Promedio 2/3 119 1/3 114 117.3333 Pronóstico de enero a (diciembre Actual) (1 - a) Diciembre Sm. Promedio 2/4 137 2/4 117.3333 127.16665 o 127 Febrero Pronóstico Enero Pronóstico 127 Marzo Pronóstico Enero Pronóstico 127 A.13.2 Simulated Forecast Calculation Julio, 2004 Sm. Promedio 2/2 129 129 Agosto Sm. Promedio 2/3 140 1/3 129 136.3333 Septiembre Sm. Promedio 2/4 131 2/4 136.3333 133.6666 Octubre, 2004 ventas Sep. Sm. Promedio 133.6666 Agosto, 2004 Sm. Promedio 2/2 140 140 Septiembre Sm. Promedio 2/3 131 1/3 140 134 Octubre Sm. Promedio 2/4 114 2/4 134 124 Noviembre, 2004 ventas Sep Sm. Promedio 124 de septiembre de 2004 Sm. Promedio 2/2 131 131 Octubre Sm. Promedio 2/3 114 1/3 131 119,6666 Noviembre Sm. Promedio 2/4 119 2/4 119.6666 119.3333 Diciembre 2004 ventas Sep Sm. Promedio 119.3333 A.13.3 Porcentaje de Precisión Cálculo POA (133.6666 124 119.3333) / (114 119 137) 100 101.891 A.13.4 Cálculo de Desviación Absoluta Media MAD (133.6666 - 114 124 - 119 119.3333 - 137) / 3 14.1111 A.14 Método 12 - Suavizado exponencial con tendencia y estacionalidad Este método es similar al método 11, Suavizado exponencial en el que se calcula un promedio suavizado. Sin embargo, el Método 12 también incluye un término en la ecuación de pronóstico para calcular una tendencia suavizada. El pronóstico se compone de un promedio suavizado ajustado para una tendencia lineal. Cuando se especifica en la opción de procesamiento, el pronóstico también se ajusta a la estacionalidad. A la constante de suavizado utilizada en el cálculo del promedio suavizado para el nivel general o la magnitud de las ventas. Los valores válidos para alfa varían de 0 a 1. b la constante de suavizado utilizada en el cálculo del promedio suavizado para el componente de tendencia de la previsión. Los valores válidos para el rango beta van de 0 a 1. Si un índice estacional se aplica al pronóstico ayb son independientes entre sí. No tienen que agregar 1.0. Historial de ventas mínimo requerido: dos años más el número de periodos de tiempo requeridos para evaluar el desempeño del pronóstico (PBF). El método 12 utiliza dos ecuaciones exponenciales de suavizado y un promedio simple para calcular un promedio suavizado, una tendencia suavizada y un factor estacional promedio simple. A.14.1 Cálculo de pronósticos A) Un promedio exponencialmente suavizado MAD (122.81 - 114 133.14 - 119 135.33 - 137) / 3 8.2 A.15 Evaluación de los pronósticos Puede seleccionar métodos de pronóstico para generar hasta doce pronósticos para cada producto. Cada método de pronóstico probablemente creará una proyección ligeramente diferente. Cuando se pronostican miles de productos, no es práctico tomar una decisión subjetiva respecto a cuál de las previsiones utilizar en sus planes para cada uno de los productos. El sistema evalúa automáticamente el rendimiento de cada uno de los métodos de pronóstico que selecciona y para cada uno de los productos previstos. Puede elegir entre dos criterios de rendimiento, la media de desviación absoluta (MAD) y el porcentaje de precisión (POA). MAD es una medida del error de pronóstico. POA es una medida del sesgo de pronóstico. Ambas técnicas de evaluación de rendimiento requieren datos reales del historial de ventas para un período de tiempo especificado por el usuario. Este período de la historia reciente se llama un período de retención o períodos de mejor ajuste (PBF). Para medir el rendimiento de un método de pronóstico, utilice las fórmulas de pronóstico para simular una previsión para el período de retención histórico. Normalmente habrá diferencias entre los datos de ventas reales y el pronóstico simulado para el período de retención. Cuando se seleccionan varios métodos de pronóstico, se produce el mismo proceso para cada método. Se calculan varias previsiones para el período de retención y se comparan con el historial de ventas conocido para ese mismo período de tiempo. Se recomienda el uso del método de previsión que produzca el mejor ajuste (el mejor ajuste) entre las previsiones y las ventas reales durante el período de retención para su uso en sus planes. Esta recomendación es específica para cada producto y puede cambiar de una generación de pronóstico a otra. A.16 Desviación absoluta media (MAD) MAD es la media (o promedio) de los valores absolutos (o magnitudes) de las desviaciones (o errores) entre los datos reales y los pronosticados. MAD es una medida de la magnitud promedio de los errores a esperar, dado un método de predicción y el historial de datos. Dado que los valores absolutos se utilizan en el cálculo, los errores positivos no anulan los errores negativos. Cuando se comparan varios métodos de pronóstico, el que tiene el MAD más pequeño ha demostrado ser el más fiable para ese producto durante ese período de retención. Cuando el pronóstico es imparcial y los errores normalmente se distribuyen, existe una relación matemática simple entre MAD y otras dos medidas comunes de distribución, desviación estándar y error cuadrático medio: A.16.1 Porcentaje de precisión (POA) Porcentaje de precisión (POA) es Una medida del sesgo de previsión. Cuando las previsiones son consistentemente demasiado altas, los inventarios se acumulan y los costos de inventario aumentan. Cuando las previsiones son consistentemente dos bajas, los inventarios se consumen y el servicio al cliente disminuye. Un pronóstico que es 10 unidades demasiado bajo, entonces 8 unidades demasiado alto, entonces 2 unidades demasiado alto, sería un pronóstico imparcial. El error positivo de 10 es cancelado por errores negativos de 8 y 2. Error Actual - Pronóstico Cuando un producto puede almacenarse en inventario, y cuando el pronóstico es imparcial, se puede usar una pequeña cantidad de stock de seguridad para amortiguar los errores. En esta situación, no es tan importante eliminar errores de pronóstico como es generar pronósticos imparciales. Sin embargo, en las industrias de servicios, la situación anterior sería vista como tres errores. El servicio estaría con escasez de personal en el primer período, y luego en exceso para los próximos dos períodos. En los servicios, la magnitud de los errores de pronóstico suele ser más importante de lo previsto. La suma durante el período de retención permite que los errores positivos cancelen errores negativos. Cuando el total de las ventas reales supera el total de las ventas previstas, la proporción es superior a 100. Por supuesto, es imposible tener más de 100 precisión. Cuando un pronóstico no es imparcial, la proporción de POA será 100. Por lo tanto, es más deseable ser 95 preciso que ser 110 exacto. El criterio POA selecciona el método de pronóstico que tiene una relación de POA más cercana a 100. El scripting en esta página mejora la navegación de contenido, pero no cambia el contenido de ninguna manera. En la práctica, el promedio móvil proporcionará una buena estimación de la media del tiempo Si la media es constante o cambia lentamente. En el caso de una media constante, el mayor valor de m dará las mejores estimaciones de la media subyacente. Un período de observación más largo promediará los efectos de la variabilidad. El propósito de proporcionar un m más pequeño es permitir que el pronóstico responda a un cambio en el proceso subyacente. Para ilustrar, proponemos un conjunto de datos que incorpora cambios en la media subyacente de la serie temporal. La figura muestra las series temporales utilizadas para la ilustración junto con la demanda media a partir de la cual se generó la serie. La media comienza como una constante en 10. Comenzando en el tiempo 21, aumenta en una unidad en cada período hasta que alcanza el valor de 20 en el tiempo 30. Entonces se vuelve constante otra vez. Los datos se simulan sumando a la media un ruido aleatorio de una distribución Normal con media cero y desviación estándar 3. Los resultados de la simulación se redondean al entero más próximo. La tabla muestra las observaciones simuladas utilizadas para el ejemplo. Cuando usamos la tabla, debemos recordar que en cualquier momento dado, sólo se conocen los datos pasados. Las estimaciones del parámetro del modelo, para tres valores diferentes de m se muestran junto con la media de las series temporales de la siguiente figura. La figura muestra la media móvil de la estimación de la media en cada momento y no la previsión. Los pronósticos cambiarían las curvas de media móvil a la derecha por períodos. Una conclusión es inmediatamente aparente de la figura. Para las tres estimaciones, la media móvil se queda por detrás de la tendencia lineal, con el retardo aumentando con m. El retraso es la distancia entre el modelo y la estimación en la dimensión temporal. Debido al desfase, el promedio móvil subestima las observaciones a medida que la media aumenta. El sesgo del estimador es la diferencia en un tiempo específico en el valor medio del modelo y el valor medio predicho por el promedio móvil. El sesgo cuando la media está aumentando es negativo. Para una media decreciente, el sesgo es positivo. El retraso en el tiempo y el sesgo introducido en la estimación son funciones de m. Cuanto mayor sea el valor de m. Mayor es la magnitud del retraso y sesgo. Para una serie cada vez mayor con tendencia a. Los valores de retraso y sesgo del estimador de la media se dan en las ecuaciones siguientes. Las curvas de ejemplo no coinciden con estas ecuaciones porque el modelo de ejemplo no está aumentando continuamente, sino que comienza como una constante, cambia a una tendencia y luego vuelve a ser constante de nuevo. También las curvas de ejemplo se ven afectadas por el ruido. El pronóstico de media móvil de los períodos en el futuro se representa desplazando las curvas hacia la derecha. El desfase y sesgo aumentan proporcionalmente. Las ecuaciones a continuación indican el retraso y sesgo de los períodos de previsión en el futuro en comparación con los parámetros del modelo. Nuevamente, estas fórmulas son para una serie de tiempo con una tendencia lineal constante. No debemos sorprendernos de este resultado. El estimador del promedio móvil se basa en el supuesto de una media constante, y el ejemplo tiene una tendencia lineal en la media durante una parte del período de estudio. Dado que las series de tiempo real rara vez obedecerán exactamente las suposiciones de cualquier modelo, debemos estar preparados para tales resultados. También podemos concluir de la figura que la variabilidad del ruido tiene el efecto más grande para m más pequeño. La estimación es mucho más volátil para el promedio móvil de 5 que el promedio móvil de 20. Tenemos los deseos en conflicto de aumentar m para reducir el efecto de la variabilidad debido al ruido y disminuir m para hacer que el pronóstico más sensible a los cambios En promedio El error es la diferencia entre los datos reales y el valor previsto. Si la serie temporal es verdaderamente un valor constante, el valor esperado del error es cero y la varianza del error está compuesta por un término que es una función de y un segundo término que es la varianza del ruido. El primer término es la varianza de la media estimada con una muestra de m observaciones, suponiendo que los datos provienen de una población con una media constante. Este término se minimiza haciendo m tan grande como sea posible. Un m grande hace que el pronóstico no responda a un cambio en la serie temporal subyacente. Para hacer que el pronóstico responda a los cambios, queremos que m sea lo más pequeño posible (1), pero esto aumenta la varianza del error. La predicción práctica requiere un valor intermedio. Previsión con Excel El complemento de previsión implementa las fórmulas de promedio móvil. El siguiente ejemplo muestra el análisis proporcionado por el complemento para los datos de muestra en la columna B. Las primeras 10 observaciones se indexan -9 a 0. En comparación con la tabla anterior, los índices de período se desplazan en -10. Las primeras diez observaciones proporcionan los valores iniciales para la estimación y se utilizan para calcular la media móvil para el período 0. La columna MA (10) (C) muestra las medias móviles calculadas. El parámetro de la media móvil m está en la celda C3. La columna Fore (1) (D) muestra un pronóstico para un período en el futuro. El intervalo de pronóstico está en la celda D3. Cuando el intervalo de pronóstico se cambia a un número mayor, los números de la columna Fore se desplazan hacia abajo. La columna Err (1) (E) muestra la diferencia entre la observación y el pronóstico. Por ejemplo, la observación en el tiempo 1 es 6. El valor pronosticado a partir de la media móvil en el tiempo 0 es 11.1. El error entonces es -5.1. La desviación estándar y la media media de desviación (MAD) se calculan en las células E6 y E7, respectivamente.
No comments:
Post a Comment